

Piero Lanucara (CASPUR)

Developing (and mantaining) large, parallel, Fortran
codes to modern (possibly heterogeneous) computer

architectures

1

Bolam parallelization
MPI based ‘Domain decomposition’

GNLON

G
N

LA
T

MYID=0

MYID=1
MYID=3

MYID=2

slide courtesy Dr. Piero Malguzzi

GNLON

G
N

LA
T

Halo comp is introduced for exchange boundary values

N
LA

T

NLON

N
LA

T

slide courtesy Dr. Piero Malguzzi

NPROCSX, NPROCSY

NLON=(GNLON-2)/NPROCSX+2

NLAT=(GNLAT-2)/NPROCSY+2

GNLON=(NLON-2)*NPROCSX+2

GNLAT=(NLAT-2)*NPROCSY+2

(NLON e NLAT numeri pari)

slide courtesy Dr. Piero Malguzzi

Bolam Speedup

• Architecture dependent
• Hyper-trading?
• Mapping of the physical domain onto core/processors
• Mostly 8 with 16 processes
• Speedup saturation with huge number of cores (>100)

“Future” Bolam development?

• SMS parallelization
• Exploiting communication/computation patterns
• Porting onto GPU architectures
• Other….

A non standard approach towards
parallelization

The Problem: porting of serial, large Fortran legacy
applications to cluster

MPI ? Of course but….

MPI learning curve is too high for standard researchers

MPI is targeted for performance but huge skills are
needed for this purpose

Not so easy to mantain different release of the same
code

7

New Parallel version of Princeton Ocean
Model (CEPOM)

Target: porting of POM serial code to clusters without
using MPI

The tool: Scalable Modeling System (SMS), which is a
tool developed at NOAA by the Advanced Computing
Section of NOAA's Earth System Research Laboratory
team

 SMS key features:

Directive based (“a la OpenMP”): portability

Source to source translator: only one code

MPI based tool: efficiency across different platform

8

SMS Workflow

The CEPOM model

10

The code is completely
parallelized using SMS
Tool

High resolution studies within the Strait of Gibraltar

CEPOM is a modified version
 of the Princeton Ocean Model
code developed together with
 ENEA Casaccia researchers

Development of a 3D seismic code

11

 Source code from Praga University in the framework of
a collaboration with INGV Roma (Site Effects study)

 Fortran 95 code that it solves elasticity PDE using finite
difference technique (some code rewriting in order to
better support SMS parallelization)

 563x852x94 huge computational grid

 Only 500 SMS directives needed to parallelize the code;
good parallel performances up to hundreds of cores for
realistic simulations

Exploiting communication/computation
patterns

12

 Source of bottleneck in highly parallel codes

 Typical workaround includes:

 Overlapping communication and computation

 Low communication High extra computation
numerical schemes (redundant computation)

Overlapping communication and computation

13

 Goal: reduce the cost of waiting for data transfer,
overlapping this communication with local computation

 Some technique:

 Overdecomposition

 Non-blocking communication (it includes double
buffering, posting receivers early….)

Exploiting LCHC schemes

14

 This strategy can yeld significan performance benefits
(application dependent)

 Using redundant computation for:

 Eliminate (or reduce) communications latency

 Reduce bandwidth usage

Exploiting LCHC schemes

15

 A simple example taken from SMS Manual

The GPU explosion

 A huge amount of computing power: exponential growth
with respect to “standard” multicore CPUs

 16

The GPU explosion

 Affordable price/performance and performance/watt
systems (the so called “Green Computing”)

 17

Jazz Fermi GPU Cluster at CASPUR

18

192 cores Intel X5650@2.67 Ghz
14336 cores on 32 Fermi C2050
QDR IB interconnect
1 TB RAM
200 TB IB storage

14.3 Tflops Peak

10.1 Tflops Linpack

785 MFlops/W

CASPUR awarded as CUDA
Research Center for 2010-2011
Jazz cluster is actually number
5 of Little Green List

mailto:X5650@2.67

The New Problem:Porting large Fortran codes
to GPU systems

CUDA is the “de-facto” standard for efficiently
programming GPU clusters...

….but at this moment the standard is targeted for C
(now C++ also) application

How to port large Fortran legacy codes?

 Rewriting the application in C/CUDA (easy?)

 Using the PGI Accelerator (efficient?) or CUDA Fortran
(is free?)

 F2C-ACC Compiler

 19

F2C-ACC compiler

F2C-ACC was developed at NOAA by the same team of
SMS (Mark Govett et al.)...

….in order to reduce the porting-time of a legacy Fortran
code to GPUs

 It works well with Fortran 77 codes plus some extension
towards Fortran 95 (most of them!)

F2C-ACC is an “open” project. Actual release is 3.0

http://www.esrl.noaa.gov/gsd/ab/ac/F2C-ACC.html

 20

How F2C-ACC partecipates “in make”

 $(F2C) $(F2COPT) filename.f90
 $(M4) filename.m4 > filename.cu
 $(NVCC) -c $(NVCC_OPT) -I$(INCLUDE) filename.cu

F2C-ACC

filename.f90

filename.m4

filename.cu filename.o

m4

nvcc

F2C-ACC: Fortran source code

22

subroutine accdata(vol,flx)

implicit none
integer k,ipn
integer nz,nip
parameter (nz=5,nip=10)
real ,intent (IN) :: vol (nz,nip)
real ,intent (INOUT) :: flx(nz,nip)

! the "in" data argument indicates the data should be copied to the gpu
! all arguments used in the acccelerated region will be copied based on the intent
! of the variable
!ACC$REGION(<nz>,<nip>,<flx:in>,<vol:none>) BEGIN
!acc$do parallel
do ipn=1,nip
!acc$do vector
 do k=1,nz
 flx(k,ipn) = flx(k,ipn)/vol(k,ipn)
 end do
end do
!ACC$REGION END

! overrides the INOUT default designed in the routine declaration
!ACC$REGION(<nz>,<nip>,<flx:inout>,<vol:none>) BEGIN
!acc$do parallel
do ipn=1,nip
!acc$do vector
 do k=1,nz
 flx(k,ipn) = flx(k,ipn)/vol(k,ipn)
 end do
end do
!ACC$REGION END

end subroutine accdata

F2C-ACC: CUDA (parsed)

23

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cutil.h>
#include "ftocmacros.h"
#define TRUE 1
#define FALSE 0
#define nz 5
#define nip 10
//!ACC$REGION(<nz>,<nip>,<flx:in>,<vol:none>) BEGIN
__global__ void accdata_Kernel1(float *vol,float *flx) {
 int ipn;
 int k;
//!acc$do parallel
 ipn = blockIdx.x+1;
// for (ipn=1;ipn<=nip;ipn++) {
//!acc$do vector
 k = threadIdx.x+1;
// for (k=1;k<=nz;k++) {
 flx[FTNREF2D(k,ipn,nz,1,1)] = flx[FTNREF2D(k,ipn,nz,1,1)] /
vol[FTNREF2D(k,ipn,nz,1,1)];
// }
// }
 return;
}
//!ACC$REGION END
//!ACC$REGION(<nz>,<nip>,<flx:inout>,<vol:none>) BEGIN
__global__ void accdata_Kernel2(float *vol,float *flx) {
 int ipn;
 int k;
//!acc$do parallel
 ipn = blockIdx.x+1;
// for (ipn=1;ipn<=nip;ipn++) {
//!acc$do vector
 k = threadIdx.x+1;
// for (k=1;k<=nz;k++) {
 flx[FTNREF2D(k,ipn,nz,1,1)] = flx[FTNREF2D(k,ipn,nz,1,1)] /
vol[FTNREF2D(k,ipn,nz,1,1)];
// }

//! ACC$REGION
//! Variables must be defined either as input arguments, or as
constants.
//!
extern "C" void accdata_ (float *vol,float *flx) {
 static float runtime = 0.0;
//! the "in" data argument indicates the data should be copied to
the gpu
//! all arguments used in the acccelerated region will be copied
based on the intent
//! of the variable
 dim3 cuda_threads1(nz);
 dim3 cuda_grids1(nip);
 // create the timer
 unsigned int timer = 0;
 extern float *d_vol;
 float *d_flx;
 cudaMalloc((void **) &d_flx,((nz)*(nip))*sizeof(float));

cudaMemcpy(d_flx,flx,((nz)*(nip))*sizeof(float),cudaMemcpyHostT
oDevice);
 cutCreateTimer(&timer);
 cutStartTimer(timer);
 // setup execution parameters
 // execute the kernel
 accdata_Kernel1<<< cuda_grids1, cuda_threads1
>>>(d_vol,d_flx);
 cudaThreadSynchronize();
 // check if kernel execution generated an error
 CUT_CHECK_ERROR("Kernel execution failed");
 cutStopTimer(timer);
 float timer__G = cutGetTimerValue(timer);
 cutDeleteTimer(timer);
 runtime += timer__G;
 //printf("accdata kernel execution time: %f \n",runtime/1000);
//! overrides the INOUT default designed in the routine declaration
 dim3 cuda_threads2(nz);
 dim3 cuda_grids2(nip);
 // create the timer

F2C-ACC Workflow

F2C-ACC translates Fortran code, with user added
directives, in CUDA (relies on m4 library for
interlanguages dependencies)

Some hand coding could be needed (see results)

Debugging and optimization Tips (e.g. Thread, block
synchronization, out of memory, coalesce, occupancy....)
are to be done manually

Compile and linking using CUDA libraries to create an
executable to run

24

Himeno Benchmark

 Developed by Dr. Ryutaro Himeno

 Implement a sort of 3D Poisson Solver using an iterative
scheme to converge

 Measures the performance in FLOPS (different grid size
from Small to XLarge)

Ported to GPUs (PGI Accelerator)

25

Himeno Benchmark

26

Himeno Benchmark

27

Himeno Benchmark

28

Himeno Benchmark

29

Time (s)

128 x 64 x 64

256 x 128 x 128

512 x 256 x 256

Serial 20.4014 173.5288 1598.4759

F2C-ACC 4.0147 20.7427 153.0812

GOSA

128 x 64 x 64

256 x 128 x 128

512 x 256 x 256

Serial 1.1000150E-06 1.5260409E-04 3.3477170E-04

F2C-ACC 1.0992105E-06 1.5201638E-04 3.2989052E-04

Himeno Benchmark: some comment

 Very good results expecially for single precision F2C-
ACC

 PGI Accelerator is able to solve sum reduction (GOSA)
and it generates efficient parallel code

 We did some CUDA hand coding to help F2C-ACC to
fix this problem (same numerical results): inherently
serial portion of code but no performance lost

 The size of the FERMI device (3GB) is a limiting factor
for the GPU computation of the test cases L and XL

30

Porting Himeno to MultiGPUs

 Preliminary results of the Himeno benchmark using
F2C-ACC are encouraging

 MultiGPU and multinode processing are key factors in
order to run Himeno benchmark on cluster

 I/O, data movement (CPU-CPU and GPU-CPU
communications) are not negligible for the MPI
application

31

Himeno Benchmark: MPI version

 Developed without accelerator

 Simple use of MPI calls to allow the comunication of
exchange boundaries (halo comp)

 Domain decomposition only in the third dimension:

 2 blocks (i=512 j=256 k=128)

 4 blocks (i=512 j=256 k=64)

 8 blocks (i=512 j=256 k=32)

 32

Himeno Benchmark: MPI version

 The MPISENDRECV call allow the communication of the
right and left layers in the loop of time iteration before
the accelerated region

 There are too much data communications between host
and device (2 complete layers every time iteration)

 So…

33

Himeno Benchmark: MPI version

 For the MPI version we implement the double buffering
technique

 we change the MPI calls to communicate only the left
slide of the the left layer and the right slide of the right
layer

 In this way we reduce the time for the communication
that is completely saturated by the time of the
computation on GPU

34

Himeno Benchmark: MPI version

 A sketch of the code:
 Copy from host to device needed data (accelerated)

 Begin iteration loop

 MPI communication reduced to slices (double buffering)

 Copy from host to device others data of layer (accelerated)

 Accelerated Region

 Copy from device to host others data of layer (accelerated)

 End iteration loop

 Copy from device to host needed data (accelerated)

35

Himeno Benchmark: MPI version

 For sake of simplicity and performances, we use only
F2C-ACC accelerator

 Computation kernels are the same of the serial version

 Data are in single precision

 Runs on the grid i=512 j=256 k=256

 36

37

Himeno Benchmark: MPI version

0

20000

40000

60000

80000

100000

120000

140000

2 proc 4 proc 8 proc 16 proc

MFLOPS (F2C-ACC)
single precision

512 x 256 x 256

2 Process

512 x 256 x 128

4 Process

512 x 256 x 64

8 Process

512 x 256 x 32

16 Process

512 x 256 x 16

1 Process - 1 GPU

Himeno Benchmark: MPI version

38

512 x 256 x 256

153,0812 (s)

512 x 256 x 128

42,2807 (s)

512 x 256 x 64

29,2211 (s)

512 x 256 x 32

21,1991 (s)

512 x 256 x 16

19,1053 (s)

POMPA COSMO p.p. is exploring “the possibilities
of a simple porting of specific physics or dynamics
kernels to GPUs”.

Two different approaches emerged to deal with the
problem: one based on PGI Accelerator directives
and the other one based on the F2C-ACC tool.

The study has been done on the Microphysics
stand alone program optimized by Xavier
Lapillonne for GPU with PGI Accel tool, and referred
on the HPCforge site.

Porting COSMO Microphysics

In microphysics program the two nested do-loop over space inside the
subroutine hydci_pp has been individuated as the part to be accelerated via PGI
directives. FILE mo_gscp_dwd.f90

MODULE mo_gscp_dwd

Elemental Functions

Subr. SATAD

Subr. HYDCI_PP_INIT

Subr. HYDCI_PP

Reference Code Structure

Accelerated
Part

via PGI dir.

FILE...

FILE...

MODULE...

MODULE...

FILE...

MAIN...

Simplified HYDCI_PP's workflow

presettings

COMPUTING

UPDATE GLOBAL OUT

“SATAD” OF SOME GLOBALS

2 nested do-loop over “i and k”

ACCELERATED
PART

...

Reference Code

 We proceeded to accelerate the same part of the code via F2C-ACC directives.
 Due to current release limitations of F2C-ACC the code structure has been partly

modfied, while the workflow has been leaved unchanged.
 The part of the code to be accelerated remain the same but this has been extracted from

hydci_pp subroutine and a file apart containing a new subroutine as been created for it:
accComp.f90.

Subr. HYDCI_PP

Subr. HYDCI_PP_INIT

MODULE mo_gscp_dwd

FILE mo_gscp_dwd.f90

FILE accComp.f90

Subr. accComp

Accelerated
Part

via F2C-ACC dir.

Modified Code Structure

Modified Code Structure: why ?

Subr. HYDCI_PP

Subr. HYDCI_PP_INIT

MODULE mo_gscp_dwd

FILE mo_gscp_dwd.f90

FILE accComp.f90

Subr. accComp

Accelerated
Part

via F2C-ACC dir.

Major limitations have driven the changing in the code are:
 Modules are (for now) not supported → necessary variables passed to the called

subroutines and called subroutines/functions included into the file.
 F2C-ACC “--kernel” option isn't carefully tested → elemental functions and subroutines

(“satad”) inlined.

Modified Code Structure
Host / Device View

Subr. HYDCI_PP

Subr. HYDCI_PP_INIT

MODULE mo_gscp_dwd

GPU

Subr. accComp

Accelerated
Part

via F2C-ACC dir.

CPU

CopyIn

CopyOut

Preliminary results

Timesteps 250 500 750 1000
CPU 42,685 84,951 125,973 166,206
GPU 5,952 11,819 18,389 26,081

F2C-ACC 4,814 9,634 16,650 21,843

Experience Applying Fortran GPU
Compilers to Numerical Weather

Prediction

Tom Henderson

NOAA Global Systems Division

Thomas.B.Henderson@noaa.gov

Mark Govett, Jacques Middlecoff

Paul Madden, James Rosinski,

Craig Tierney slide courtesy Dr. Tom Henderson NOAA

mailto:Thomas.B.Henderson@noaa.gov

NIM NWP Dynamical Core

NIM = “Non-Hydrostatic Icosahedral Model”
New NWP dynamical core
Target: global “cloud-permitting” resolutions ~3km (42 million

columns)
Rapidly evolving code base

Single-precision floating-point computations
Computations structured as simple vector ops with

indirect addressing and inner vertical loop
“GPU-friendly”, also good for CPU
Coarse-grained parallelism via Scalable

Modeling System (SMS)
Directive-based approach to distributed-memory

parallelism

slide courtesy Dr. Tim Henderson NOAA

Icosahedral (Geodesic) Grid: A Soccer
Ball on Steroids

Icosahedral Model Lat/Lon Model

slide courtesy Dr. Tim Henderson NOAA

Early Work With Multi-GPU Runs

F2C-ACC + SMS directives

Identical results using different numbers of GPUs
Poor scaling because compute has speed up but

communication has not
Working on communication optimizations

Demonstrates that single source code can be used for
single/multiple CPU/GPU runs

Should be possible to mix HMPP/PGI directives with SMS
too

slide courtesy Dr. Tim Henderson NOAA

Thanks!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Bolam Speedup
	“Future” Bolam development?
	A non standard approach towards parallelization
	New Parallel version of Princeton Ocean Model (CEPOM)
	SMS Workflow
	The CEPOM model
	Development of a 3D seismic code
	Exploiting communication/computation patterns
	Overlapping communication and computation
	Exploiting LCHC schemes
	Exploiting LCHC schemes
	The GPU explosion
	The GPU explosion
	Jazz Fermi GPU Cluster at CASPUR
	The New Problem:Porting large Fortran codes to GPU systems
	F2C-ACC compiler
	Slide Number 21
	F2C-ACC: Fortran source code
	F2C-ACC: CUDA (parsed)
	F2C-ACC Workflow
	Himeno Benchmark
	Himeno Benchmark
	Himeno Benchmark
	Himeno Benchmark
	Himeno Benchmark
	Himeno Benchmark: some comment
	Porting Himeno to MultiGPUs
	Himeno Benchmark: MPI version
	Himeno Benchmark: MPI version
	Himeno Benchmark: MPI version
	Himeno Benchmark: MPI version
	Himeno Benchmark: MPI version
	Slide Number 37
	Himeno Benchmark: MPI version
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Experience Applying Fortran GPU Compilers to Numerical Weather Prediction
	NIM NWP Dynamical Core
	Icosahedral (Geodesic) Grid: A Soccer Ball on Steroids
	Early Work With Multi-GPU Runs
	Thanks!

