IDRAIM: A Methodological Framework for Hydromorphological Analysis and Integrated River Management of Streams

<u>Martina Bussettini¹</u>, Massimo Rinaldi², Nicola Surian³, Francesco Comiti⁴,

> ¹ISPRA Roma, ²Università di Firenze, ³University of Padova,⁴ University of Bolzano

ISPRA: Italian National Institute for Environmental Protection and Research

- National Public Body supporting the Ministry of Environment (MoE)
- Research Institute + National Environment Agency
- National coordinator of Regional EA federation
- National WISE node
 - Support policies implementation
 - ✓ Produce standards + methodologies for monitoring + evaluation of env. status, flood hazard etc...
 - ✓ Make methodologies applicable✓ Training activity

Italian context

 Densely populated country and high levels of risk related to fluvial processes

Magra River catchment

EU Directives: conflicting objectives...?Water FrameworkFloods Directive (FD)Directive (WFD)

Potentially conflicting objectives:- Quality- Safety

Motivation

Need of geomorphological tools: Italian Environmental Agency (ISPRA) (2008) promoted research **Objectives**

(1) To develop a method for morphological assessment (WFD) (2009-2010);
(2) To develop a comprehensive methodological framework to support integrated management of geomorphological river processes (2010 – 2013)

Novelties

The framework stems from existing methods but accounts for the specific Italian context and the European Directives (WFD & FD), explicitly including consideration of fluvial hazard (FD)

IDRAIM: key characteristics

(1) Catchment-wide spatially hierarchical framework;(2) Temporal component explicitly accounted;

- (3) Consideration of **channel dynamics** in terms of fluvial hazards explicitly accounted;
- (4) Framework designed to comply with WFD and FD requirements, but could be used for other purposes in river management;
- (5) Method designed to be used by **environmental or water agencies**
- (6) Based on **GIS-remote sensing** analysis and **field survey**

Overall structure

Phase 4: Management

Phase II: Past evolution and present river conditions

Reconstruction of <u>evolutionary trajectories</u> and interpretation of causes of changes

<u>Assessment of</u> <u>morphological quality</u>: - Morphological Quality Index (MQI) <u>Assessment of channel dynamics</u> (hazards):

- Morphological Dynamics Index (MDI)
- Event Dynamics Classification (EDC)
- Morphological river dynamics corridors (*MDC*, *EDCo*)

Morphological Quality Index (MQI)

• Aim: classification of current state of a river reach

Geomorphological functionality

F1: Longitudinal continuity

• • •

F13: Linear extension of functional vegetation

Artificiality

A1: Upstream alteration of flows

A12: Vegetation management

Channel Adjustments

CA1: Adjustments in channel pattern CA2: Adjustments in channel width CA3: Bed level adjustments

2 sets of evaluation forms: confined, partly confinedunconfined

RINALDI M., SURIAN N., COMITI F., BUSSETTINI M. (2013) – A method for the assessment and analysis of the hydromorphological condition of Italian streams: the Morphological Quality Index (MQI). Geomorphology, 180-181, 96-108.

River Hydromorphology

Training activity on hymo monitoring and assessment all over Italy

5 day-courses (theory and field) for institutional operators all over the country

Phase II: Past evolution and present river conditions

Reconstruction of <u>evolutionary trajectories</u> and interpretation of causes of changes

<u>Assessment of</u> <u>morphological quality</u>: - Morphological Quality Index (MQI)

Assessment of channel dynamics (hazards): - Morphological Dynamics Index (MDI) - Event Dynamics Classification (EDC) - Morphological river dynamics corridors (MDC, EDCo)

Morphological Dynamics Index (MDI)

• Aim: evaluation of channel dynamics in the long time scale (100 years)

Indicator s	Assessed parameters		
M or phology and processes			
M1 – Channel typology	Definition of channel pattern based on sinuosity,		
	braiding, and anastomosing indices		
M 2 – Bank erodibility	Type of banks (cohesive, non cohesive), percentage of		
	protected banks and vegetation cover		
M3 – Bed er odibility	Type of bed (alluvial, bedrock outcrops), percentage of		
	bed revetments		
M 4 – Bank erosion processes	Length of retreating banks and rate of retreat		
M 5 – Channel width trend	Changes in channel width during the last 10-15 years		
M 6 – Bed-level trend	Bed-level changes during the last 10-15 years		
Artificial elements			
A1 – Bank protection	Length of protected banks		
A2 – Bed protection	Length of bed protected by revetments or ramps		
Channel adjustments			
CA1 – Adjustments in channel patter n	Changes in channel pattern from 1950s based on		
	changes in sinuosity, braiding, and anastomosing		
	indices		
CA2 – Adjustments in channel width	Changes in channel width from 1950s		
CA3 – Bed-level adjustments	Bed-level changes over the last 100 years		

Morphological Dynamics Index (MDI)

A and B: Magra R.: MDI "high"; C: Aurino R., MDI: "low"

Event Dynamics Classification (EDC)

• Aim: assess the most likely channel responses to extreme flood events (-100 year return period).

Two investigated aspects:

- (1) assessment of the expected magnitude of morphological changes taking place during the event;
- (2) assessment of the clogging conditions at critical crosssections (e.g., bridges).

EDC: magnitude of changes

Channel dynamics: I: very high; II: high; III: medium; IV: low

EDC: clogging at critical sections

Clogging probability: H: high; L: low

Channel crossing types

Event Dynamics Classification (EDC)

A, B and C: Teglia R.: EDC "very high"; D: Tagliamento R., EDC: "medium"

Morphological river dynamics corridors

Delineation of 2 corridors:

Morphological Dynamics Corridor (MDC): progressive

changes

Event Dynamics Corridor (EDCo): changes associated to extreme event (>100 years RP)

	Historical evolution	Potential future erosion	Natural elements of confinement	Bank protection and other artificial elements
MDC	Since 1950s of XX century	50 years	No priority	Priority
EDCo	Since end XIX century / beginning XX century	50 or 100 years	Priority	No priority

Priority indicates those elements that are essential for the identification of the corridor, whereas no priority indicates those elements that need to be considered but do not determine the final delimitation of the corridor which depends on other elements.

Morphological Dynamics

Phase IV: Management

- General decision-making framework to manage geomorphological processes

IDRAIM: handbook + xls sheets

IDRAIM – sistema di valutazione IDRomorfologica, AnalisI e Monitoraggio dei corsi d'acqua

> Massimo RINALDI Nicola SURIAN Francesco COMITI Martina BUSSETTINI

> > Con il contributo di

Barbara LASTORIA Laura NARDI IDRAIM – sistema di valutazione idromorfologica, analisi e monitoraggio dei corsi d'acqua – Versione 0 (2014)

http://www.isprambiente.it/it/pubblicazioni/manuali-e-lineeguida/

